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Introduction 

Tubular-plate lead/acid batteries are finding increasing application in 
several market areas, especially in Europe and Japan [l]. The long life, 
dimensional stability, and reliability all contribute to the success of these 
batteries in the power industry. 

Modelling of lead/acid batteries is an area of active research [ 2 - 91. Most 
of these studies have concentrated on flat-plate batteries. By contrast, little 
work [2,9] has been carried out on the modelling of tubular-plate batteries. 
The early work of Euler and Horn [2] was based on the use of electrical 
analogs for simulating the current distribution in tubular electrodes. More 
recently, Lin et al. [9] have developed a pseudo steady-state model for the 
H,SO, concentration, reaction rate, and degree of discharge of tubular posi- 
tive (PbO,) electrodes during discharge. The model consists of a set of coupled, 
non-linear, differential equations that are usually solved numerically [9]. 

The purpose of the work presented here is to develop a simple, analytical 
model for the charge/discharge behaviour of the positive PbOz tubular 
electrode. Such a model will facilitate the design and optimization of batteries 
using tubular-plate electrodes. Theoretical representation of the complete cell 
is not possible with the present model because the complicated geometrical 
configuration of tubular-plate types requires the solution of coupled, non-lin- 
ear, partial differential equations. 

Mathematical model 

The modelling of a tubular-plate positive PbO, electrode gives rise to the 
following three differential equations [ 91. 

(1) 

(3) 
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where: D is the diffusion coefficient of the acid (the subscripts c and o 
represent the values in the cathode and free solution, respectively); C’ is the 
ratio between C, the concentration at radius r, and C,; R’ is the ratio 
between r and L which is the outer radius of the electrode; t, is the 
transference number of H+ ions; E is the porosity; f is a factor equal to 
IL/2FD,C, where I is the total current density; i is the ratio between i, (the 
current density in the electrolyte) and I; a is equal to (k,RT/FLI) where k is 
the conductivity of the electrolyte; q’ is equal to Fq/RT where q is the 
overpotential; E’ is equal to (FE,/RT); b is equal to (F(D, - D.&,/IL) 
where the subscripts 1 and 2 represent H+ and HSO,-, respectively; Q is the 
conductivity of the electrode material; h is equal to - LS,,i,/l where S,, is the 
initially available active surface in a fully charged electrode and i, is the 
exchange current density; X is the degree of discharge; X,,, is the maximum 
fraction of the electrode material that can be utilized at a given current 
density. 

The porosity, E, is related to X as follows: 

E =E,-g(l-&,)X (4) 

where g is a constant and has a value of 0.917. 

The degree of discharge (DOD) is dependent upon the current according to: 

IL ’ 1 WW dz x _ 

D,q, s R’ dR’ (5) 

0 

where q, is the quantity of the charge available initially per unit volume. 
The boundary conditions for eqns. (4) and (5) are: 

R’s0 i=dC’=O , 
dR’ 

R’=l, i =C’=] 

Instead of solving these equations numerically, as was the procedure in ref. 
9, it will be assumed that C is given by the following expression: 

m+R’2 cc----- 
m+l (6) 

This relationship fits the above boundary conditions and closely matches the 
numerical solution [9]. Substitution of eqns. (4) and (6) in eqn. (1) gives the 
following linear differential equation: 

where N is equal to: 

(7) 
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and K is equal to: 

The solution of eqn. (7) with the boundary condition of i = 1 at R’ = 1 is: 

> 1 1 -- 
(R’)N K(N + 1) 

R’ 

and on substitution in eqn. (5) yields: 

l R’-_(N+ 1) 
2 

K(N + 1) -K(N+l) 1 

(8) 

where P is equal to ILr /D,q,. 
Finally, the overpotential can be obtained by substitution into eqn. (3) 

as follows: 

1 -X/P 

?‘= -z’nh(l-X,x_) 
00) 

The solution given by eqn. (9) at R’ = 0 fails. Instead, if eqn. (7) is first taken, 
and with the knowledge that 

lim k-i.!_ 
W-0 R’_dR 

then, X at R’ = 0 is given by the following: 

x= 2P 

K(N + 1) 

(11) 

02) 

The value of m can be obtained by substitution of eqns. (6), (8) and (10) in 
eqn. (2) and by employing a least-square fitting as follows: 

1 

d 
- 
dm 

G2(m, R’)dR’ =0 
> 

(13) 

0 

where G is the difference between the left-hand and right-hand sides of eqn. 
(2). The value of m can be calculated either by means of a numerical method 
(e.g., the Newton-Raphson method) or by a graphical approach (see Appendix 

A). 
During battery charging, eqns. (1) and (2) are valid whereas eqn. (3) is 

replaced by the following relationship due to the depletion of PbSO, as PbO, 
is being formed [ 81: 

(14) 
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Results 

Although there were no data available for concentration, reaction rate, 
rate of discharge, and potential distributions in tubular-plate cells, the model 
was used to determine these in a number of cases. In particular, the effects of 
current density, electrode thickness, time of discharge and concentration 
were studied. 

Effect of current density 
The model was used to calculate the H,SO, concentration, current 

density, degree of discharge, and overpotential distributions for an electrode 
radius of 0.1 cm, an H&SO, concentration of 4.9 x 10e3 mol cmW3, a discharge 
time of 90 min, and current densities of 25 and 100 Am-‘. The results are 
shown in Figs. 1 - 4. 
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Fig. 1. Concentration distribution at 25 and 100 A rnmz. Time = 90 min; electrode radius = 0.1 cm; 
H,SO, concentration = 4.9 x 10W3 mol cm-3. 
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Fig. 2. Local current-density distribution at 25 and 100 Amp2. Time = 90min; electrode 
radius = 0.1 cm; H,SO, concentration = 4.9 x 10W3 mol cme3. 



231 

1.0 

59. 

0.0 

x 0.7 

% 0.6 0 I=100 A Im' 

5 
.g 0.5 A I=25 A lm’ 
B 0.L 
Q 0.3 

d 0.2, 

01 : 

0 

=s 

0 0.2 0.4 0.6 0.0 1.0 

Radial distance II 

Fig. 3. Degree of discharge distribution at 25 and 100Am-2. Time =9Omin; electrode ra- 
dius = 0.1 cm; H,SO, concentration = 4.9 x 10W3 mol cm-‘. 
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Fig. 4. Overpotential distribution at 25 and 100 Am-*. Time =9Omin; electrode 
radius = 0.1 cm; H,SO, concentration = 4.9 x 10V3 mol crne9. 
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Fig. 5. H,SO, concentration distribution at 237 and 610 min. Current density = 25 A m-‘$ elec 
trode radius = 0.3 cm; H,SO, concentration = 4.9 x 10W3 mol cmwS. 
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Fig. 6. Local current-density distribution at 237 and 610 min. Current density = 25 A me2; elec- 
trode radius = 0.3 cm; H,SO, concentration = 4.9 x 10es mol cm-3. 
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Fig. 7. Degree of discharge distribution at 237 and 610 min. Current density = 25 Am-‘; elec- 
trode radius ‘= 0.3 cm; H,SO, concentration = 4.9 x 10W3 mol cme3. 
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Fig. 8. Overpotential distribution at 237 and 610 min. Current density = 25 A m-*, electrode 

radius = 0.3 cm; H,SO, concentration = 4.9 x lo-” mol cmey. 
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Fig. 9. H,SO, concentration distribution at 4.9 x 10e3 and 1 x lo-‘mol cm-‘. Current den- 
sity = 50 A me2; time = 255 min; electrode radius = 0.1 cm. 
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Fig. 10. Local current-density distribution at 4.9 x 10W3 and 1 x lo-’ mol cmea H,SO,. Current 
density = 50 A me2; time = 255 min; electrode radius = 0.1 cm. 
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Fig. 11. Degree of discharge distribution at 4.9 x lo-’ and 1 x 10da mol cme3 H,SO,. Current 
density = 50 A m-$ time = 255 min; electrode radius = 0.1 cm. 
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Fig. 12. Overpotential distribution at 4.9 x 10W3 and 1 x 10e2 mol cme3 H,SO,. Current den- 
sity = 50 A mw2; time = 256 min; electrode radius = 0.1 cm. 

The data show that as the current density increases, the concentration 
decrease becomes more steep. The local current density increases to a 
maximum at around R = 0.2 and then decreases to its lowest value at the 
outer radius. The degree of discharge shows a similar pattern as it is directly 
dependent on the current density. The overpotential increases with total 
current density. 

Effect of discharge time 
An increase in the charging time results in a larger drop in electrolyte 

concentration, a larger degree of discharge, a lower current density and a 
higher overpotential. These findings are evident from the results shown in 
Figs. 5 - 8 and are consistent with the effect of discharge time on these 
parameters. 

Effect of electrode radius 
The effect of electrode radius can be examined by comparison of the 

curves in Figs. 5 - 8, with Figs. 9 - 12 that are plotted for a radius of 0.3 cm and 
0.1 cm, respectively. The results show that the degree of discharge increases 
as the electrode radius decreases. 

Effect of electrolyte concentration 
The effect of increasing the H,SO, concentration from 4.9 x 10m3 to 

1 x lo-’ mol cme3 is shown in Figs. 9 - 12. The data reveal that both the 
degree of discharge and the overpotential decrease with increase in elec- 
trolyte concentration. 

Conclusions 

It is possible with the present model to simulate the behaviour of the 
positive electrode of lead/acid batteries under different conditions of current 
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density, discharge time, electrode radius, and electrolyte concentration. Al- 
though the determination of actual current distributions by the analysis of 
reaction products is rather tedious [lo], the model can be tested in the future 
when enough data are available for comparison. 
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Appendix A 

Sample calculation of m 

For a current density of 25 A me2, a time of 610 min, an electrode radius 
of 0.3 cm, and an H,SO, concentration of 4.9 x 10e3 mol cmP3, the expressions 
of C, i, X and q were substituted in eqn. (2) and the difference between the 
left-hand and right-hand sides was used to calculate the integral 
(j: G2(m, R’) dR’). This integral was plotted as a function of m in Fig. 13. The 
minimum was found to be at m = 0.47. This value of m was subsequently used 
to obtain the concentration, reaction rate,, state-of-discharge and overpoten- 
tial distributions shown in Figs. 5 - 8, respectively. 
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Fig. 13. Graphical determination of m. 


